This course discusses special topics of artificial intelligence. This year this course focuses on the basic concepts of statistical natural language processing. This course will explore current statistical techniques for the automatic analysis of natural (human) language data. The dominant modeling paradigm is corpus-driven supervised learning, but unsupervised methods and even hand-coded rule-based systems will be mentioned when appropriate. In the first part of the course, we will examine the core tasks in natural language processing, including language modeling, word-sense disambiguation, morphological analysis, part-of-speech tagging, syntactic parsing, semantic interpretation, coreference resolution, and discourse analysis. In each case, we will discuss which linguistic features are relevant to the task, how to design efficient models which can accommodate those features, and how to estimate parameters for such models in data-sparse contexts. In the second part of the course, we will explore how these core techniques can be applied to user applications such as information extraction, question answering, speech recognition, machine translation, and interactive dialog systems.
通過條件
成 績 :60 分
- 課程介紹
- 課程安排
- 評論